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Research Goal

“*Persistent and sequential activity models
are two prominent models of short-term
memory in neural circuits.

“*What is the underlying circuit mechanism
that determines whether a persistent or
sequential solution will emerge in the
network?

“*Authors address this question by training
RNNs on several short-term memory tasks
under a wide range of circuit and task
manipulations.
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Networks

“*Each network is trained to learn
a short-term memory task

“*Tuning functions map a
stimulus to the firing rate of
Input neurons

“*Poisson input neurons fire
independently at each time
step of the task

“*RelLU units clip activity such that
the lower bound is zero
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(Probe +)
Stimulus Delay Response
250 ms: 1,000 ms 250 ms:

Delayed estimation

Change detection

Gated delayed estimation

2AFC

Comparison

$e0se 0

Report stimulus
® Change/no change?
1 or25 Report cued stimulus

Left/rlght?

-m- Lower/higher?



Sequentiality Index

S| = (entropy of peak response time distribution of the recurrent neurons)
+ (mean log ridge-to-background ratio of the neurons)
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Factors Affecting S| of Network
Solutions

“* Intrinsic circuit properties
“» Temporal complexity of tasks
“ Hebbian STSP

% Delay duration variability



Intrinsic circuit properties
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Temporal complexity of tasks increases S
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Hypothesis: increasing target function
complexity (i.e. frequency) increases
sequentiality of the network solution
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Symmetric Hebbian STSP decreases S

Basic discrete-time formulation: ¥ =f ( "Vrl‘,_ 1+ m,ht +b)
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Delay duration variability decreases Sl
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Circuit mechanism that generates sequential

versus persistent activity
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Concluding Remarks

“*This paper establishes a mechanism for the maintenance of
STM and shows that persistent and sequential solutions are
ends of a spectrum that emerges from training

“Why does the network’s mechanism for maintaining short-
term memory rely on non-normal dynamics?

“Is the model biologically realistic?



